Plasmonic metal-dielectric-metal stack structure with subwavelength metallic gratings for improving sensor sensitivity and signal quality.

نویسندگان

  • Sherif H El-Gohary
  • Jong Min Choi
  • Nak-Hyeon Kim
  • Kyung Min Byun
چکیده

In this study, we investigated the performance improvement of a localized surface plasmon resonance (LSPR) biosensor by incorporating a metal-dielectric-metal (MDM) stack structure and subwavelength metallic nanograting. The numerical results showed that the LSPR substrate with a MDM stack can provide not only a better sensitivity by more than five times but also a notably improved signal quality. While the gold nanogratings on a gold film inevitably lead to a broad and shallow reflectance curve, the presence of a MDM stack can prevent propagating surface plasmons from interference by locally enhanced fields excited at the gold nanogratings, finally resulting in a strong and deep absorption band at resonance. Therefore, the proposed LSPR structure could potentially open a new possibility of enhanced detection for monitoring biomolecular interactions of very low molecular weights.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid Dielectric-loaded Nanoridge Plasmonic Waveguide for Low-Loss Light Transmission at the Subwavelength Scale

The emerging development of the hybrid plasmonic waveguide has recently received significant attention owing to its remarkable capability of enabling subwavelength field confinement and great transmission distance. Here we report a guiding approach that integrates hybrid plasmon polariton with dielectric-loaded plasmonic waveguiding. By introducing a deep-subwavelength dielectric ridge between ...

متن کامل

Enhancement of localized surface plasmon resonance detection by incorporating metal-dielectric double-layered subwavelength gratings.

In this study, we investigated the enhanced sensing performance of a localized surface plasmon resonance (LSPR) biosensor by employing metal-dielectric double-layered subwavelength grating structures. The numerical results showed that the LSPR substrate with a dielectric spacer can provide not only a better sensitivity but also a significantly improved reflectance characteristic. While the pres...

متن کامل

Infrared Perfect Ultra-narrow Band Absorber as Plasmonic Sensor

We propose and numerically investigate a novel perfect ultra-narrow band absorber based on a metal-dielectric-metal-dielectric-metal periodic structure working at near-infrared region, which consists of a dielectric layer sandwiched by a metallic nanobar array and a thin gold film over a dielectric layer supported by a metallic film. The absorption efficiency and ultra-narrow band of the absorb...

متن کامل

Utilization of Field Enhancement in Plasmonic Waveguides for Subwavelength Light-Guiding, Polarization Handling, Heating, and Optical Sensing

Plasmonic nanostructures have attracted intensive attention for many applications in recent years because of the field enhancement at the metal/dielectric interface. First, this strong field enhancement makes it possible to break the diffraction limit and enable subwavelength optical waveguiding, which is desired for nanophotonic integrated circuits with ultra-high integration density. Second, ...

متن کامل

Plasmonic Thermal Conductance of Stack of Metallic Nanorings

In this paper, we study the plasmonic thermal conductance of ordered stacks of metallic nanorings in a host material. Using second quantized formalism of the Random Phase Approximation, we first determine the dispersion relations of surface plasmon waves on the stacks of nanorings. Then, using Landauer-Buttiker formalism, we determine the coefficient of plasmonic thermal conductance and heat cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Applied optics

دوره 53 10  شماره 

صفحات  -

تاریخ انتشار 2014